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Abstract

Background: Memory CD8 T cells to influenza A viruses are widely detectable in healthy human subjects and broadly cross-
reactive for serologically distinct influenza A virus subtypes. However, it is not clear to what extent such pre-existing cellular
immunity can provide cross-subtype protection against novel emerging influenza A viruses.

Methodology/Principal Findings: We show in the mouse model that naturally occurring sequence variations of the
conserved nucleoprotein of the virus significantly impact cross-protection against lethal disease in vivo. When priming and
challenge viruses shared identical sequences of the immunodominant, protective NP366/Db epitope, strong cross-subtype
protection was observed. However, when they did not share complete sequence identity in this epitope, cross-protection
was considerably reduced. Contributions of virus-specific antibodies appeared to be minimal under these circumstances.
Detailed analysis revealed that the magnitude of the memory CD8 T cell response triggered by the NP366/Db variants was
significantly lower than those triggered by the homologous NP366/Db ligand. It appears that strict specificity of a dominant
public TCR to the original NP366/Db ligand may limit the expansion of cross-reactive memory CD8 T cells to the NP366/Db

variants.

Conclusions/Significance: Pre-existing CD8 T cell immunity may provide substantial cross-protection against hetero-
subtypic influenza A viruses, provided that the priming and the subsequent challenge viruses share the identical sequences
of the immunodominant, protective CTL epitopes.
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Introduction

Infection with one subtype of influenza A virus often results in a

strong protection against subsequent infections with heterosubty-

pic influenza A viruses in animal models. This type of immunity,

termed heterosubtypic immunity [1], is unable to prevent infection

per se, but can considerably reduce viral load, leading to an

accelerated recovery from influenza illness [2]. Heterosubtypic

immunity is a necessary component of a so-called ‘‘universal’’

influenza vaccine that would provide protection against illness

from multiple subtypes of influenza A viruses.

Optimal heterosubtypic immunity is thought to be dependent

on multiple components of the immune system. This includes T

cells, especially the CD8 T cell subset that recognizes CTL

epitopes derived from the conserved internal proteins of the virus

such as nucleoprotein (NP) and matrix protein 1 (M1) [2],

haemagglutinin (HA)-specific mucosal IgA antibodies [3], and

serum antibodies specific for the ecotodomain of the highly

conserved matrix protein 2 (M2) [4], and possibly, HA-specific

antibodies that recognize conserved B cell epitopes of the

molecule [5,6]. Extensive studies in the mouse model have

demonstrated that one or other component of the immune system

may play a dominant role under different circumstances. For

example, many studies have shown that CD8 T cells are the

major mediator of heterosubtypic immunity following intranasal

priming of immune competent mice with live influenza virus

particles [7–9]. On the other hand, heterosubtypic immunity was

not observed in B cell-deficient mice, although the same

challenge route was used and cross-reactive CTLs were

detectable in these animals [10].

Seasonal influenza A H1N1 and H3N2 viruses have been

circulating in humans for many years [11]. As a result, peripheral

blood memory T cells that are broadly cross-reactive, not only

against serologically distinct seasonal influenza A viruses but also

avian H5N1 influenza viruses, can be demonstrated in healthy

individuals [12–15]. As a majority of influenza virus-specific

memory CD8 T cells are directed against the conserved NP and

M1 protein [16], it has long been proposed that pre-existing
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memory CD8 T cells should, in principal, provide some degree of

cross-protection against disease during the emergence of a new

pandemic influenza A virus in humans. However, although CD8

T cell mediated heterosubtypic protection is relatively efficient in

animal models, such immune benefit remains unclear in humans.

Recent analysis of the historic epidemiological data suggests that

prior exposure to H1N1 influenza virus resulted in generation of

protective immunity against heterosubtypic H2N2 virus [17]. A

variety of NP and/or M1-based novel vaccination strategies are

currently under evaluation for their efficiency to induce T cell

immunity-based protection against heterosubtypic influenza A

viruses [18,19]. However, even the more conserved internal

proteins of influenza A viruses, including the NP, undergo

evolutionary change [20,21]. Consequently, multiple CD8 CTL

epitope variants have been identified in circulating seasonal

influenza A viruses [22,23]. In vitro studies have showed that

certain human CD8 CTL clones generated were able to recognize

CTL epitope variants derived from both homo- and hetero-

subtypic influenza A viruses [24]. The impact of such sequence

variations on CD8 T cell-mediated heterosubtypic immunity in vivo

has not been examined previously.

In the present study, we assessed the ability of cross-reactive

memory CD8 T cells to the immunodominant, protective

NP366/Db CTL epitope to confer protective heterosubtypic

immunity under circumstance where priming and subsequent

challenge influenza A viruses do or do not share sequence

identity of the CTL epitope. Our results reveal that sequence

variations in the NP of influenza A viruses can significantly

impact heterosubtypic protection mediated by the NP366/

Db-specific memory CD8 T cells in vivo, under circumstances

in which virus-specific serum HI antibodies, nasal IgA and

serum M2-specific antibodies were unlikely to impact on the

protective heterosubtypic immunity.

Results and Discussion

In the present study, we chose the C57BL/6 (B6) mouse

model to assess the extent of heterosubtypic immunity based on

the following considerations: (1) Both CD8 and CD4 T cell

epitope repertoire of influenza A virus have been extensively

characterized in B6 mice and a Db-restricted, immunodominant

NP366 epitope is the major target to mediate a protective,

memory CTL response after secondary infections with influenza

A viruses [25–28]. (2) Analysis of the deduced amino acid

sequences of the NP gene from a large number of influenza A

viruses (955 sequences), indicated that, certain amino acid

residues within the NP366/Db CTL epitope undergo constant

evolutionary change (Table 1), despite the overall conserved

nature of this internal protein between different influenza A

virus subtypes (,89% identity among sequences analyzed). A

total of ten naturally occurring NP366 variants were identified,

each representing a different subtype of influenza A virus. Of

interest, all of the amino acid substitutions observed were

located at the C-terminal bulge of the NP366 peptide backbone,

the featured structural region of the NP366/Db complex exposed

for recognition by the TCRs of CD8 T cell subset induced by

influenza A virus infection [29]. (3) Except for the NP366/Db

epitope, each panel of heterosubtypic influenza A viruses used

for priming and secondary challenge in the present study share

identical immunodominant MHC class II T cell epitopes and all

other known class I T cell epitopes (Table S1 and Table S2).

Such a combination of priming and challenge viruses offers an

unique opportunity to dissect the impact of NP366/Db epitope

sequence variation on memory CD8 T cell-mediated protective

heterotypic immunity in B6 mice.

Heterosubtypic protection is significantly decreased
when challenge influenza A viruses do not share identical
NP366/Db CTL epitopes as the priming virus

We first evaluated the extent of heterosubtypic protection

against lethal challenge with viruses that do or do not share the

identical NP366/Db CTL epitope as the priming viruses. As

expected from previous studies [7,8], mice that were primed by

intranasal infection with X31 virus (H3N2) did not show any

body weight loss following intranasal challenge with a low lethal

dose (3 LD50) of heterosubtypic PR8 virus (H1N1) that shares

complete sequence identity in the NP366 CTL epitope with X31

virus (Fig. 1, upper panel). To further evaluate the robustness of

the heterosubtypic protection induced under this circumstance, a

second group of X31-primed mice received a 10-fold higher

lethal challenge dose (30 LD50) of PR8 virus. Even in this case,

X31-primed mice exhibited only modest and transient weight

loss on day five after the lethal viral challenge (maximum mean

weight loss: ,5%) and rapidly regained the weight to normal

levels by day seven post-challenge. All X31-primed animals

survived challenge with either lethal dose of PR8 virus. In

contrast, mice that were primed by NT60 virus (H3N2) and then

challenged with 3 LD50 of PR8 virus, lost approximately ,10%

Table 1. Naturally occurring NP366/Db CTL epitope variants of
influenza A viruses1

Influenza A virus strain Subtype
Peptide
name

Peptide
sequence

A/Puerto Rico/8/1934 H1N1 NP366WT A S N E N M E T M

A/Taiwan/01/1986 H1N1 NP366E-D A S N E N M D T M

A/Japan/305/1957 H2N2 NP366E-D A S N E N M D T M

X31 H3N2 NP366WT A S N E N M E T M

A/NT/60/1968 H3N2 NP366ET-DA A S N E N M D A M

A/Hong Kong/127/1982 H3N2 NP366M-V A S N E N V E T M

A/Memphis/102/1972 H3N2 NP366E-D A S N E N M D T M

A/Memphis/6/1990 H3N2 NP366ET-DN A S N E N M D N M

A/Hong Kong/156/1997 H5N1 NP366MT-VA A S N E N V E A M

A/Vietnam/1203/2004 H5N1 NP366T-A A S N E N M E A M

A/duck/Guangxi/1793/2004 H5N1 NP366M-L A S N E N L E T M

A/chicken/Guiyang/3570/2005 H5N1 NP366M-I A S N E N I E T M

A/chicken/Korea/S1/2003 H9N2 NP366M-T A S N E N T E T M

1A pool of 995 amino acid sequences of influenza A virus nucleoprotein were
retrieved from the Entrez protein database of National Center for
Biotechnology Information (NCBI). This includes 46 NP sequences isolated from
wild birds (quail and gull), 546 from domestic birds (chicken, duck and goose),
187 from humans, 156 from swine, and 20 from equine. Each NP sequence was
derived from one isolate of influenza A virus. Sequence alignment was
performed by using MAFF (version 5.8) multiple sequence alignment program
accessible at http://us.expasy.org. Listed are the ten naturally occurring Db-
restricted NP366 variants with amino acid mutations at the potential TCR
contact positions (position 4, 6, 7 and 8 of the peptides). Mutations at the
primary and secondary Db anchor positions of the NP366 variants (position 3, 5
and 9) are anticipated to result in the considerable loss of the peptide binding
to the MHC molecule, thus not included for further experimental analyses in
the present study. One representative strain of influenza A virus for each NP366

variant identified is listed to illustrate the serological heterogeneity of the
influenza A viruses that bear these CTL epitope mutations in nature. Amino
acids underlined represent mutations relative to PR8-NP366 sequence.

doi:10.1371/journal.pone.0010583.t001
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of body weight between day 7 and 9 post-challenge. When a

second group of NT60-primed mice were challenged with high

lethal dose (30 LD50) of PR8 virus, mice experienced severe

weight loss. Only 50% of the mice survived in this group of

animals. Control mice challenged with either doses of PR8 virus

experienced substantial and rapid weight loss and succumbed to

between day five and seven post-challenge. Thus, compared with

the control mice, priming with NT60 virus can confer substantial

level of cross-protection when the challenge dose of the

heterosubtypic PR8 virus was low. However, severe body weight

loss was observed in the group of NT60 virus-primed animals

when high lethal dose of the PR8 virus was administered. One

explanation for the results described above is that the robust

cross-subtype protection conferred by priming with X31 virus is

simply due to the ability of the virus to replicate more extensively

in the lung of B6 mice compared to NT60 virus (the mean peak

lung virus titers are approximately 107 and 105 EID50/lung,

respectively), which may in turn stimulate a stronger memory

immune response after priming. To rule out this possibility, we

tested the ability of the X31 virus to induce cross-subtype

protection against challenge with Taiwan virus (H1N1), where

the NP366 epitope sequences between the two viruses differ by

only one amino acid residue at the C-terminal bulge of the

peptide-Db ligand (Table 1). A different H3N2 priming virus,

Memphis, was also used because it shares complete identity in

NP366/Db epitope sequence with Taiwan virus and replicates to

a similar extent in B6 mouse lungs as the NT60 virus (mean peak

lung virus titer: 105 EID50/lung). As shown in Fig. 1, lower

panel, priming with the Memphis virus conferred robust

protection against either a low (3LD50) or high (9 LD50) lethal

dose challenge of the heterosubtypic Taiwan virus. Note that the

latter is the maximum lethal challenge dose achievable for this

virus. In contrast, cross-protection against the Taiwan virus was

significantly reduced in X31-primed mice.

Together, these results support previous observations demon-

strating that priming with one subtype of live influenza A viruses

can results in significant protection against subsequent infections

with a different subtype of influenza A viruses [7-9]. Moreover,

our results suggest that optimal protective heterosubtypic immu-

nity conferred by CD8 T cells is only achieved when priming and

challenge virus share the identical immunodominant CTL

epitope(s). When the challenge viruses do not share the identical

CTL epitopes with the priming viruses, the degree of hetero-

subtypic immunity against different subtypes of influenza A viruses

appears to depend on the challenge dose. Complete cross-

protection from death can be achieved, if the challenge dose is

low, but protective heterosubtypic immunity is considerably

reduced in the face of a high lethal challenge dose.

Decreased heterosubtypic immunity is not primarily
correlated to mucosal and serum antibodies, but to CD8
T cell subset

It has become increasingly clear that both T cell and B cell

arms of the immune system may contribute to heterosubtypic

immunity after influenza A virus infection, depending on the

experimental systems used. In the present study, we used

immune competent B6 mice in conjunction with intranasal

priming and challenge to assess the capacity of the hetero-

subtypic immunity. It is possible that the differential capacity of

the heterosubtypic immunity observed under this circumstance

may be attributed to either the B cell or T cell arm of the

immune system, or both.

To distinguish these possibilities, we first examined the possible

correlation between serum HA-specific antibodies and heterosubtypic

immunity. As expected, priming of B6 mice with either X31 or

Memphis virus intranasally resulted in a robust serum antibody

response to the homologous strains of the H3N2 viruses (Fig. 2A).

Thirty-five days after the priming, serum HI geometric mean titers

(GMT) to the homologous X31 and Memphis virus reached to 320

and 184, respectively. However, no subtype cross-reactive serum HI

antibodies were detectable to the heterosubtypic Taiwan H1N1 virus

following intranasal priming with either live H3N2 virus. Control

mice did not show any detectable HI titers against any of the three

influenza A viruses tested. These observations are consistent with the

generally accepted understanding that serum HI and neutralizing

antibodies to the HA glycoprotein of influenza A viruses are subtype-

specific and their role in heterosubtypic immunity is minimal under

normal circumstances.

We next examined whether IgA antibodies on the surface of the

upper and lower respiratory tract of the primed mice contributed

to heterosubtypic immunity following a lethal challenge. Fig. 2B

shows that nasal washes obtained 35 days after priming with either

X31 or Memphis virus contained IgA antibodies reactive to their

homologous virus, although the GMT titers were low (32 and 8,

respectively). However, cross-reactive nasal IgA antibodies to the

heterosubtypic Taiwan H1N1 virus were not detected following

intranasal priming with either H3N2 viruses. Similar results were

obtained when lung IgG antibodies from the same animals were

examined by a whole virus-ELISA, except that the amount of

cross-subtype IgG antibodies to the Taiwan H1N1 virus were

equally evident in the lung washes of both groups of the animals

(Fig. 2C). Given that HA and NA from X31, e.g. A/Aichi/2/68,

and A/Memphis/102/72 virus share high sequence identity

(HA1: 96.6%, NA: 94.4%, respectively), it is not surprise that

approximately equivalent amount of cross-subtype IgG antibodies

to the Taiwan H1N1 virus were detected in the lung washes of

both groups of the animals (Fig. 2C. GMT: 588 after priming with

X31 versus 256 after priming with Memphis virus, respectively).

Thus, neither nasal IgA nor lung IgG appeared to correlate with

the differential capacity of the heterosubtypic immunity induced

(Fig. 1).

Increasing evidence suggests that M2-specific antibodies

induced by vaccination can provide cross-subtype protection

against influenza A virus infections [4]. We monitored the levels of

serum anti-M2 antibodies after priming with either X31 or

Memphis virus using an M2e peptide-based ELISA. As shown in

Fig. 2D, although M2-specific antibodies were detected, the GMT

titers were low (35 after X31priming and only 5 after Memphis

priming, respectively) and highly variable among individual mice.

Therefore, we found no correlation between the levels of serum

M2-specific antibodies induced by intranasal infection priming

and the cross-subtype protection.

Next we examined the effect of T cell subset depletion on the

capacity of heterosubtypic immunity described above. As shown in

Fig. 3A, mock-primed animals experienced substantial body

weight loss following lethal challenge with 9LD50 of Taiwan

virus. All of the animals succumbed to infection by day 7 after

lethal challenge, independent of CD8 or CD4 T cell depletion in

vivo. In contrast, consistent with the results shown in Fig. 1,

priming with Memphis virus led to strong resistance to subsequent

lethal challenge with 9 LD50 of Taiwan virus (Fig. 3B). However,

when the CD8 T cell subset was depleted in vivo from the

Memphis-primed animals, significant weight loss was observed on

day 5 after lethal challenge (mean percentage of original body

weight: 92.3% versus 82.9% when PBS control was compared

with CD8-depleted group, p = 0.0079). Depletion of CD4 T cell

subset also resulted in slightly more severe weight loss compared to

the PBS control group (90.2% versus 92.3%), but the difference

T Cell Immunity to Influenza
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was statistically not significant (P = 0.0952). Note that when

compared to PBS-treated naı̈ve animals, mice that was primed

with Memphis virus and depleted of memory CD8 T cells showed

significantly higher degree of cross-protection on day 5 after

challenge with heterosubtypic Taiwan H1N1 virus (Mean body

weight loss: 77.4% versus 82.9%, respectively. P = 0.0389). This is

consistent with previous observation that primed CD4 T cell

subset may also provide certain degree of cross-subtype protection

under certain circumstances [2].

These results provide further evidence that multiple components of

the immune system may be involved in the cross-subtype protection

against heterosubtypic influenza A viruses, but CD8 T cell functions

may be most closely correlated with heterosubtypic protection

induced following intranasal inoculation with live influenza A virus.

Figure 1. Body weight loss and survival after heterosubtypic influenza virus infections. Five to eight B6 mice per group were primed
intranasally with X31 or Memphis H3N2 influenza A viruses as indicated or equal volume of allantoic fluid as control. 35 to 45 days after priming,
the animals were challenged with lethal doses of heterosubtypic H1N1 influenza viruses as indicated. Body weight loss (left panel) and survival
(right panel) of the animals were monitored until day 19 after lethal challenge. Animals that lost 25% of their initial body weight were
considered moribund and sacrificed according the animal protocol. The results were expressed as body weight loss of individual mice per
group. The numbers on the lower right corner of each graph indicate survival rate of each group (the number of animals survived/total number
of animals tested).
doi:10.1371/journal.pone.0010583.g001
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Figure 2. Strain-specific and cross-reactive antibodies following lethal challenge of primed mice with heterosubtypic influenza A virus.
Five B6 mice per group were primed intranasally as described in figure 1. Serum, lung and nasal washes were sampled from individual animals at day 37
after priming and tested for serum HI titers (A), nasal wash IgA titers (B), lung wash IgG titers (C) against homotypic as well as heterosubtypic influenza A
viruses as indicated. Serum IgG antibody titers to M2 protein was determined by an ELISA using synthetic M2e peptide as antigen (D).
doi:10.1371/journal.pone.0010583.g002

Figure 3. Effect of CD8- or CD4 T cell depletion on heterosubtypic immunity. Five B6 mice per group were primed intranasally as described
in figure 1. Mock-primed (A) or Memphis virus-primed (B) animals were depleted of either CD8- or CD4 T cell subset in vivo as described in Materials
and Methods. Monitoring of body weight loss after lethal challenge with Taiwan virus and expression of the results were described in detail in
figure 1. One representative result is shown from two independent studies with similar results. Asterisk (*) indicates a statistically significant difference
when CD8-depleted group was compared with PBS control group.
doi:10.1371/journal.pone.0010583.g003
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Decreased capacity of the heterosubtypic immunity is
correlated with significantly reduced magnitude of the
cross-reactive memory CD8 T cell response to the NP366/
Db variants

Early data obtained using 51Cr-release assay revealed that

influenza virus-specific CD8 T cells are in general highly cross-

reactive [30,31]. However, the magnitude of cross-reactive CD8 T

cell responses to influenza virus CTL epitope variants has not been

quantitatively studied in the context of heterosubtypic immunity in

vivo. We thus used a dual MHC class I tetramer technique to

quantify the total numbers of the NP366/Db -specific CD8

memory effector cells in the lung and the spleen of the mice

following the sequential influenza A virus infection. As shown in

Fig. S1A, flow cytometric analysis confirmed the specificity and

cross-reactivity of these tetramers to homologous and heterologous

NP366/Db variants. As shown in Fig. 4A, priming with X31 virus

followed by challenge with PR8 virus led to a massive expansion of

the PR8-NP366/Db -specific CD8 T cells in the lungs of the

animals on day 5 post-challenge (6.946105 cell/lung). However,

when NT60-primed mice were challenged with PR8 virus, the

total number of tetramer-positive cells detected in the lungs was

significantly lower (0.846105 cell/lung) compared with those

obtained following X31-PR8 virus sequential infection

(p = 0.0006). Similar results were obtained when X31-Taiwan

virus sequential infection was performed. A detailed analysis of the

compositions of the NP366/Db tetramer-positive memory effector

cell populations showed that following X31-PR8 virus sequential

infection, over 95% of the responding memory CD8 T cells were

directed to the NP366/Db epitope shared by both virus strains

(Fig. 4B and Fig S1B). CD8 T cells cross-reactive to the NT60-

NP366/Db variant were detectable, but at a very low frequency

(,5%). In contrast, following either NT60-PR8 or X31-Taiwan

sequential infection, the majority of the responding memory

effector cells were cross-reactive to both the priming and challenge

NP366/Db epitope. In either case, only a small proportion of the

cells were specific for the respective priming and the challenge

NP366/Db epitope. It is intriguing to note that the percentage of

the CD8 T cells specific for the priming NT60-NP366/Db epitope

was considerably higher than those specific for the challenge PR8-

NP366/Db variant (24.5% versus 6.4%) following the NT60-PR8

sequential infection. However, such a biased memory CD8 T cell

response was less pronounced following X31-Taiwan sequential

infection (19.2% of X31-NP366/Db+CD8+ cells versus 14.2% of

Taiwan-NP366/Db+CD8+ cells). These data clearly demonstrate

that the quantity of the cross-reactive memory CD8 T cells is

considerably diminished when priming and challenge viruses lack

complete sequence identity of the NP366/Db CTL epitope.

Preliminary data indicate that the functional quality of the

different subsets of the NP366/Db memory effector cells may not

differ considerably, as detection of intracellular IFNc secretion

following restimulation of the CD8 T cells with the homologous as

well as the NP366 variant peptides did not reveal substantial

differences for any population tested.(Fig. S2).

Together with the observations described above (Fig. 1 and 3),

these results clearly indicate that the capacity of the heterosubtypic

immunity mediated by the NP366/Db CD8 T cells is closely

associated with the sequence similarities between the priming and

the subsequent challenge NP366/Db epitopes. If both epitopes bear

the identical NP366 sequence, strong heterosubtypic immunity can be

anticipated, primarily owning to a robust expansion of the memory

CD8 T cells triggered by the homologous challenge NP366/Db

epitope. When the challenge viruses do not share the identical

sequence of the NP366/Db epitopes with the priming viruses, two

important factors may contribute to the reduced hetersubtypic

immunity. First, considerably reduced expansion of the cross-reactive

NP366/Db cells triggered by the heterologous challenge NP366/Db

variants (Fig. 4). Another factor may be a biased memory CD8 T cell

response toward the priming NP366/Db, but not the challenge

NP366/Db epitope, as was observed with the NT60-PR8 sequential

infection (Fig. 4B). The reason for this phenomenon is not clear at

present. It is possible that CTL original antigenic sin may exist under

this circumstance. So far, this phenomenon has been only

documented after infection with lymphocytic choriomeningitis viruses

Figure 4. Magnitude and composition of specific and cross-reactive CD8 T cells to wild-type and variant NP366/Db epitope after
heterosubtypic influenza virus infections. Five to ten B6 mice per group were primed and challenged with lethal doses of heterosubtypic
influenza A viruses as described in figure 1. Lung tissues were collected from individual animals five days after the lethal challenge and examined for
the magnitude of the CD8 T cell response to the wild-type and variant NP366/Db epitope (A). The mean percentages of the cell subsets from the same
set of the data were used to assess the composition of the NP366/Db response specific for the original NP366 priming sequence or cross-reactive to the
NP366 challenge variants as indicated (B).
doi:10.1371/journal.pone.0010583.g004
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[32] or Dengue virus [33]. More comprehensive studies are needed to

ascertain whether the phenomenon observed after NT60-PR8

sequential infection represents a generic CTL original antigenic sin

phenomenon in the influenza A virus system, as such a phenomenon

was not observed following a sequential delivery of X31-NP366 and

Taiwan-NP366, which differ in one amino acid residue at position 7 of

the NP366/Db epitope.

Limited plasticity of a dominant public TCR to the
heterologous NP366/Db variants may contribute to the
decreased expansion of the cross-reactive memory CD8 T
cells

The data thus far suggest a limited TCR plasticity of the NP366/

Db -specific memory CD8 T cells for heterologous NP366/Db

variants. We and others have observed previously that public

TCRs are strongly selected following a primary influenza A virus

infection in B6 mice (up to 50%) [34,35]. As a dominant public

TCR that recognizes PR8-NP366/Db epitope has been function-

ally expressed in the form of a stable transfectant [36], this allowed

us to dissect to what extent the public TCR can cross-react to the

naturally occurring NP366/Db variants identified from the bank of

NP sequences (Table 1). As shown in Fig. 5A, with the exception of

the NP366ET-DN amino acid substitutions, all of the NP366

variants bound to the Db molecule with similar high affinity.

Surprisingly, when the ability of the public TCR to recognize these

NP366 peptide variants was examined, only the cognate NP366/Db

ligand derived from the NP of the PR8 virus was able to trigger the

activation of the TCR transfectant (Fig. 5B). Interaction between

the nine NP366 peptide variants and the public TCR did not result

in the production of IL-2 under the same experimental conditions.

These results indicate that the high frequency of the public TCR

in the memory CD8 T cell repertoire cannot tolerate any

substitutions of the TCR contact residues within the original

NP366 peptide sequence. Even a single conserved residue

replacement at position 7 (D-E7) completely abolished the

productive interaction between the TCR and the variant NP366/

Db ligands, as observed in the case of the Taiwan-NP366/Db ligand

(Table S1). It is conceivable that such a stringent requirement for

sequence identity between the public TCR and its original NP366/

Db ligand may considerably reduce the cross-reactivity of memory

CD8 T cells following re-infections with heterosubtypic influenza

A viruses bearing NP366/Db variants.

Taken together, our results reveal a significant limitation of an

important immune effector responsible for heterosubtypic immu-

nity to influenza A virus infection. We found that following

primary infection, a high frequency of the NP366-specific memory

T cells generated used the public TCRs that are strictly specific for

the priming NP366/Db epitope sequence. Upon re-exposure to

heterosubtypic viruses that share the identical NP366 epitope

sequence with the priming strain, robust memory CD8 response to

the initial NP366/Db ligand were obtained, leading to the

generation of strong heterosubtypic immunity. However, if the

challenge virus does not share the identical NP366 epitope

sequence with the priming virus, expansion of the pre-existing,

cross-reactive memory CD8 T cells may be limited, either due to

their low frequency in the memory CD8 cell repertoire or possibly,

a CTL original antigenic sin phenomenon under certain

circumstances. Consequently, the heterosubtypic immunity gen-

erated is significantly reduced. This implies that efforts to promote

CD8 T cell immunity-based vaccination strategies against

heterosubtypic influenza A viruses may be most effective, only

when the priming and the protective CTL epitopes targeted share

the identical epitope sequences. Our findings re-emphasize that

multiple immune components may be required for development of

broad-protective influenza vaccines.

Materials and Methods

Ethics Statement
All animal research conducted in the present study was

approved by CDC’s Institutional Animal care and Use Committee

(Approval number: 1619) and in an Association for Assessment

and Accreditation of Laboratory Animal Care International-

accredited facility.

Influenza A viruses and infection
The influenza A viruses used in this study were the H3N2

viruses X31, a reassortant virus possessing the surface HA and NA

glycoprotein of A/Aichi/2/68 (H3N2) and six internal genes of A/

Puerto Rico/8/34 (H1N1; PR8), A/Northern Territory/60/68

(NT60), A/Memphis/102/72 (Memphis) and the H1N1 viruses

PR8 and A/Taiwan/01/86 (Taiwan). All viruses were propagated

in the allantoic cavity of 10-day old embryonated chicken eggs. All

of the viral stocks were titered for HA units and 50% egg infectious

dose (EID50). In addition, the 50% mouse infectious dose (MID50)

and 50% lethal dose (LD50) for C57BL/6 (B6) mice were

determined for the H3N2 and H1N1 viruses, respectively (Table

S3).

Female B6 mice were purchased from Taconic (Albany, NY)

and were used at 6-10 weeks of age. For priming, mice were

inoculated intranasally with 250 MID50 of an H3N2 virus using

Avertin as anesthesia. Between 35 and 45 days later, a time point

where the memory T cells are generally considered to have

established, the primed mice were challenged intranasally with

lethal doses of H1N1 viruses as indicated. Mice that lost 25% of

their original body weights were considered moribund and

euthanized.

Sera and tissue sampling
Immune sera from mice were collected from the orbital plexus on

day 35–45 after priming. To collect lung and nasal washes, mice

were sacrificed and the trachea was exposed. An 18-gauge cannula

attached to a 1-ml syringe was inserted into the lungs through the

incision in the trachea. The lungs were flushed repeatedly with a 1-

ml volume of PBS buffer containing 1% bovine serum albumin.

Nasal wash samples were recovered by flushing 1 ml of the PBS

buffer through the tracheal incision forwarded into the nasal

passage. The fluid expelled through the nares was collected in a

petri dish and was flushed through the nose two more times. Lung

and spleen tissues were sampled at the indicated time points and

processed to give single cell suspensions for flow cytometry analysis

as described previously [35].

Synthetic peptides
NP366 peptides were synthesized either at New England

Peptide, Inc., Fitchburg, MA, or at Division of Research

Resources, CDC, Atlanta, GA. The purity of the synthesized

peptides was .96%, as determined by HPLC analysis. All

peptides had expected masses as confirmed by mass spectrometry.

Influenza serology assays
Sera were treated with receptor-destroying enzyme from Vibrio

cholerae (Denka-Seiken, Tokyo, Japan) before testing for the

presence of H1 and H3-specific antibodies [37]. The hemagglu-

tination-inhibition (HI) assay was performed using 4 hemaggluti-

nating units of virus and 0.5% turkey red blood cells [37]. IgG and

IgA antibodies were detected by an ELISA using sucrose gradient
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centrifugation purified viruses as antigens as described previously

[38]. The ELISA end-point titers were expressed as the highest

dilution that yielded an OD greater than the 2 times mean OD

plus SD of similarly diluted negative control samples.

In vivo depletion of CD8 and CD4 T cells
Mice were injected i.p. every third day either with 500 mg of

purified rat anti-mouse CD8a mAb (clone 2.43), or 320 mg of

purified rat anti-mouse CD4 mAb (clone GK1.5) or the same

volume of PBS as control. Both mAb products were produced at

Division of Research Resources, CDC, Atlanta, GA. The

depletion started 3 days before viral infection and continued until

the experiments were completed (day 10 after viral infection). The

depletion started after priming and 3 days before secondary viral

challenge with lethal dose of influenza A viruses and continued

until the experiments were completed (day 10 after viral infection).

Flow cytometric analysis confirmed that CD8 and CD4 T cells

were undetectable in lung and spleen tissues during the entire 10-

day period of observation, whereas the B cell subset was not

affected by either of the depletion protocols.

Figure 5. Plasticity of a dominant public TCR to NP366/Db variants. Serially titrated amount of synthetic NP366/Db peptides identified in table 1
were used to stabilize Db expression on the surface of a TAP-deficient RMA-S cells in an RMA-S assay (A). The results were expressed as mean
fluorescence intensity (MFI). The ability of the NP366/Db variants to trigger activation of a T cell transfectant (clone A3-4) expressing the dominant
public TCR specific for the PR8-NP366/Db ligand, was assessed by an IL-2 assay (B). The data are representative of two independent experiments.
doi:10.1371/journal.pone.0010583.g005
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Flow cytometry
Influenza virus NP366 tetramers conjugated either with PE or

APC were purchased from Beckman Coulter, Inc., (San Diego,

CA). Immuno-staining of cells was performed as described

previously [35] using the tetramers in combination with

fluorochrome-conjugated anti-mouse CD3e and CD3a mAb

(BD Pharmingen). The results were expressed as either total

numbers of tetramer+CD8+ cells per organ or the percentage of

tetramer+CD8+ cells among total CD8 T cells.

MHC-I-peptide binding
The binding affinity of the NP366 peptide variants to mouse H-2

Db molecules was evaluated by measuring stabilization of MHC-I

molecules on the surface of the TAP-deficient mutant cell line RMA-

S according to a protocol described previously [26]. The results were

expressed as mean fluorescence intensity (MFI) of RMA-S cells

incubated with serially titrated amount of NP366 peptides.

Determination of IL-2 production by the TCR
transfectants

Generation of the A3-4 transfectant expressing a public TCR

specific for PR8-derived NP366/Db has been described in detail

elsewhere [36]. A mouse Th1/Th2 cytokine Cytometric Bead Array

(BD) was done as described previously to measure the levels of IL-2

in the culture supernatant following stimulation of the transfectant

with the NP366 peptide variants in the presence of EL-4 cells as

APCs. The detection sensitivity of the assay is 20 pg IL-2/ml.

Statistical analysis
Data were analyzed with unpaired t test (Prism 5, GraphPad

Software, Inc.) as indicated. P,0.05 is considered statistically

significant.

Supporting Information

Table S1 MHC class I-restricted immunodominant T cell

epitopes of the influenza A viruses used in the present study.

Found at: doi:10.1371/journal.pone.0010583.s001 (0.03 MB

DOC)

Table S2 MHC class II-restricted immunodominant T cell

epitopes of the influenza A viruses used in the present study.

Found at: doi:10.1371/journal.pone.0010583.s002 (0.03 MB

DOC)

Table S3 Infectivity of the virus stocks used in the present study.

Found at: doi:10.1371/journal.pone.0010583.s003 (0.04 MB

DOC)

Figure S1 NP366/Db-specific response after influenza A virus

infection. B6 mice were infected intranasally with 250 MID50 of

H3N2 influenza viruses as indicated. A. 10 days after primary

infection, lung tissues were collected. Primary NP366/Db-specific

CD8 response was examined by flow cytometry as described in

detail in Material and Methods. CD3+CD8+ T cells were gated

for analysis of NP366/Db+ cells. B. 40 days after primary

infection, a second group of the animals were challenged

intranasally with either 3 LD50 of PR8 virus or 3 LD50 of

Taiwan virus. Lung and spleen tissues were collected on day 5

after lethal challenge. Memory NP366/Db-specific CD8 response

was examined as described in A.

Found at: doi:10.1371/journal.pone.0010583.s004 (0.44 MB TIF)

Figure S2 IFNc secretion of NP366/Db-specific memory CD8

T cells. Single cells were prepared from the pooled spleen of B6

mice (5 mice per group) that were primed with x31 and

subsequently challenged with lethal dose of either PR8 or Taiwan

virus as described in Fig. S1. The cells were then stimulated with

either 0.5 mg/ml of the NP366 peptides as indicated or no peptide

in the presence of IL-2. Amino acid sequences of the NP366

peptides used are shown in table S1. After 16 hour in culture, the

cells were stained with anti-mouse IFNcmAb intracellularly

followed by surface staining with anti-CD3 and CD8 mAbs.

CD3+CD8+ T cells were gated for flow cytometric analysis. The

data are representative of two independent experiments.

Found at: doi:10.1371/journal.pone.0010583.s005 (0.24 MB TIF)
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